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Uncertainty management is a key aspect of any information fu-
sion (IF) system. Evaluation of how uncertainty is dealt with within
a given IF system is distinct from, although closely related to, evalu-
ation of the overall performance of the system. This paper presents
the Uncertainty Representation and Reasoning Evaluation Frame-
work (URREF), which is developed by the ISIF Evaluation of Tech-
niques for Uncertainty Representation Working Group (ETURWG)
for evaluating the uncertainty management aspects of IF systems.
The paper describes the scope of the framework, its core element—
the URREF ontology, the elementary fusion process it considers,
and how these are related to the subjects being evaluated using the
framework. Although material about the URREF has been previ-
ously published elsewhere, this work is the first to provide a com-
prehensive overview of the framework, establishing its scope, core
elements, elementary fusion process considered, and relationship
between these and the subjects they are designed to evaluate. We
also briefly describe a few use cases of the framework, discussing

how URREF can be applied in their evaluation.
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I.  INTRODUCTION

Evaluating how well an Information Fusion (IF) sys-
tem performs requires defining the relevant criteria to be
assessed and testing the IF system’s fusion algorithm,
data model, and architecture against that criteria. Empir-
ical evaluation techniques are effective when assessing
the latter two, but face a major limitation when address-
ing the former. More specifically, they often require em-
bedding some uncertainty representation and its associ-
ated reasoning scheme within the fusion method, which
serves as an enabler and becomes often the subject of
evaluation itself. Inherently, it is not a trivial problem to
isolate the uncertainty representation from either its rea-
soning scheme or the fusion algorithm, which prevents
an effective assessment of the IF system since current
methods cannot capture the impact of these in the over-
all IF system’s performance. The work described in this
paper focuses on addressing this limitation, providing a
principled method for evaluating how the uncertainty
representation and reasoning aspects of an Information
Fusion impact its overall performance.

IF applications typically must deal with information
that is incomplete, imprecise, inconsistent and other-
wise in need of a sound methodology for representing
and managing uncertainty. Complex and dynamic use
cases make such tasks even more difficult, as appar-
ently minor differences in how uncertainty is handled
may drastically affect the output of the IF process. In
short, it is fair to state that uncertainty management is
a key aspect in most—if not all—IF systems. Despite
this importance, the IF community still does not have a
standardized framework for evaluating how uncertainty
is represented and managed in IF systems. IF systems
typically perform uncertainty reasoning to achieve their
goals, which means they would benefit from a frame-
work to evaluate how well they are performing on it.

The lack of an uncertainty evaluation framework
for IF systems tends to be more widely acknowledged
at higher levels of the Joint Directors of Laboratories
(JDL) model [1]-[3]. More specifically, Low-Level In-
formation Fusion (LLIF) systems (i.e., below JDL level
2) tend not to represent semantics explicitly. Semantics
is commonly understood among theoreticians and al-
gorithm developers, and is typically implicitly encoded
in algorithms through devices such as variable naming
conventions. LLIF systems tend to rely exclusively on
probability theory as the paradigm for uncertainty repre-
sentation and reasoning. This is justified by the typically
large amount of available data, which justifies the use
of statistical models to address the fusion problems at
hand. Tools and techniques for evaluating probabilis-
tic inference systems are well-understood. In contrast,
because of the complexity and variety of semantic cat-
egories for High-Level Information Fusion (HLIF), ap-
plications usually require making semantics explicit and
accessible to formal reasoning tools. Furthermore, HLIF
systems make use of a variety of theories and methods
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to represent and reason with uncertainty. For example,
deciding whether three different radars receiving echos
from the same location are seeing one, two, or three
tracks is a problem for which uncertainty is well under-
stood and for which standard evaluation methods are
well established. On the other hand, deciding whether
the incoming fighter formation poses a danger to a radar
installation may involve a multiplicity of sources of un-
certainty, and may require consideration of complex se-
mantic concepts such as enemy doctrine, the spatial con-
figurations associated with hostile and innocuous for-
mations, how danger should be defined, and the like.

Uncertainty analysis is even more critical for sys-
tems relying on multiple types of data and different
uncertainty paradigms. Soft data is unstructured and in-
trinsically ambiguous [4], and tracking its uncertainty
[5] often requires explicit semantics [6]. Heterogeneous
fusion combines data of different natures, and uncer-
tainty propagation for heterogeneous fusion still lacks
a well-established and widely agreed upon theoretical
foundation [7].

Clearly, a system that can reason about these and
other HLIF problems must consider complex seman-
tics, and may be required to employ multiple uncer-
tainty formalisms (e.g., a fuzzy membership function
might be used to transform verbal danger categories
into a quantitative representation, which might be com-
bined with a probability distribution on events leading
to different levels of danger). The design of a HLIF sys-
tem would definitely benefit from an uncertainty eval-
uation framework that would guide the selection of the
most suitable uncertainty representation and reasoning
technique. An ability to compare uncertainty handling
approaches would enable exploitation of semantically
rich representations to help assess its performance when
facing an uncertain input. With the emergence of alter-
native uncertainty theories in addition to probabilities
(see for instance [8] for a survey) came the question of
which approach is the best suited for uncertainty han-
dling in a specific problem setting. The question has
been addressed both theoretically (e.g., [9]-[12]) and
in practical implementation of fusion solutions (e.g.,
[13]-[15]). Handling uncertainty in fusion problems is
indeed a major challenge for algorithm designers as it
generates many questions, such as what “uncertainty”
means, where it comes from, on what it bears, how
to interpret the associated numerical values or mea-
sures, how to distinguish between its different varieties,
etc. Acknowledging the existence of different types or
facets of information quality provides partial answers
(e.g., [16]-[18]). Nevertheless a deep understanding of
the different uncertainty representation and reasoning
techniques, their underlying mathematical frameworks,
and associated hypotheses and semantics, is necessary
to guide a fusion system’s designer in making informed
choices about the most suitable technique to the problem

at hand. Such a deep understanding provides clearer ex-
planations of the algorithms to the user for an improved
synergy between the human and the machine [19].

The International Society of Information Fusion
(ISIF) recognized this problem, and created a work-
ing group to address it. The ISIF Evaluation of Tech-
niques for Uncertainty Representation Working Group
(ETURWG) [20], [21] was created in the ISIF Board of
Directors meeting just after the Fusion 2011 conference
(Chicago, IL, USA) to specifically address this issue.
The ETURWG’s main goals are (1) to establish features
required for any quantitative uncertainty representation
to support the exchange of soft and hard information
in a net-centric environment; (2) to develop a set of
use cases involving information exchange and fusion re-
quiring reasoning and inference under uncertainty; and
(3) to define evaluation criteria supporting principled
comparisons among different approaches applied to the
use cases. As of this writing, the group has convened
104 general meetings spanning its 7 years of activities,
and resulted in 43 peer-reviewed articles on the subject.
The group’s website! provides comprehensive informa-
tion about its activities, including agendas and minutes
of the meetings, datasets used, documentation on case
studies and discussions, as well as a large amount of
information related to the research efforts by the group.

This paper provides an overview of the Uncertainty
Representation and Reasoning Evaluation Framework
(URREF). It not only updates but also substantially en-
hances a similar paper published in the Proceedings of
the Fusion 2012 conference [22]. After this brief intro-
duction, Section II provides an overview of recent and
current efforts in evaluating uncertainty in IF systems.
Section III introduces the framework, which supports
assessment of the impact of uncertainty representation
on a fusion system. This is followed by a section cov-
ering the relationship between the framework elements
and the subjects it is evaluating. Section V presents a
brief description of case studies applying the frame-
work. The final section contains discussion and con-
clusion.

II.  EVALUATING UNCERTAINTY IN FUSION SYSTEMS

The evaluation of how uncertainty is dealt with
within a given IF system is distinct from, although
closely related to, the evaluation of the overall perfor-
mance of the system [23], [24]. Figure 1 shows the el-
ements of a generic IF model. The figure distinguishes
between processes associated with low-level and high-
level IF, a distinction dating to the seminal fusion model
developed by the Joint Directors of Laboratories (JDL)
[1]-[3]. Evaluation criteria and associated metrics for
the overall system include the effects of the uncertainty
representation, but there are also effects of other aspects
of the fusion system that can affect the performance of
the system. These are more encompassing in scope than

Thttp://eturwg.c4i.gmu.edu, free registration required for full access
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Fig. 1. The principal processing components of the IF process
include both high level and low level processing components. Low
level fusion processes include detection, association, state estimation
and attribute classification, whereas high level fusion processes
include behavioural pattern estimation, association, behaviour
prediction and situation classification.

those focused on the uncertainty handling within the
system. Metrics focused on uncertainty handling should
address the contribution of uncertainty handling to the
overall system performance.

For example, fusion-system-level metrics include
timeliness, accuracy and confidence. Clearly, different
choices in uncertainty representation approaches will
affect the achievable timeliness, accuracy, and confi-
dence of a system, and therefore must be considered
when evaluating both the system’s performance as a
whole and the specific impact of the uncertainty han-
dling approach. Yet, when evaluating timeliness (or any
other system-level metrics), one will likely find some
factors not directly related to the handling of uncer-
tainty itself, such as object tracking and classification
report updates (i.e., Level 1 fusion), situation and threat
assessment relative to scenario constraints (i.e., Level
2/3 fusion), overall system architecture (e.g., central-
ized, distributed, etc.), data management processes and
feedback/input control processes (i.e., Level 4 fusion
considerations), and user-machine coordination based
on operating systems (i.e., Level 5 fusion), and others.

The IF community envisions effortless interaction
between humans and computers, seamless interoperabil-
ity and information exchange among applications, and
rapid and accurate identification and invocation of ap-
propriate services. As the complexity of fusion solu-
tions grows, we end up with a mixture of components
handling different types of uncertainties, often by using
different methods.

Here, the term “uncertainty” is intended to encom-
pass a variety of aspects of imperfect knowledge, in-
cluding incompleteness, inconclusiveness, vagueness,
ambiguity, and others. The term ‘“uncertainty reason-
ing” is meant to denote the full range of methods de-
signed for representing and reasoning with knowledge

when approaches based on Boolean algebra (e.g. propo-
sitional logic) are not applicable (e.g. when Boolean
truth-values are unknown, unknowable, or inapplicable.
Commonly applied approaches to uncertainty reason-
ing include probability theory, fuzzy logic, subjective
logic, Dempster-Shafer theory, DSmT, and numerous
other methodologies.

The problem of representing and reasoning with
complex and heterogeneous data was addressed by a
working group of the World Wide Web Consortium
[25]. The working group’s findings are relevant to the
challenge considered in this paper. Information fusion
under uncertainty is an intrinsic requirement for many
of the problems in the World Wide Web domain. A full
realization of the World Wide Web as a source of pro-
cessable data and services demands formalisms capable
of representing and reasoning under uncertainty.

e Automated agents are used to exchange Web informa-
tion that in many cases is not perfect. Thus, a stan-
dardized format for representing uncertainty would
allow agents receiving imperfect information to in-
terpret it in the same way as were intended by the
sending agents.

e Data often are intrinsically uncertainty-laden. Exam-
ples include weather forecasts or gambling odds.
Canonical methods for representing and integrating
such information are necessary for communicating it
in a seamless fashion.

e Non-sensory collected information is also often in-
correct or only partially correct, raising concerns re-
lated to trust or credibility. Uncertainty representation
and reasoning helps to resolve tension amongst infor-
mation sources having different confidence and trust
levels.

e Dynamic composability of Web Services will re-
quire runtime identification of processing and data
resources and resolution of policy objectives. Uncer-
tainty reasoning techniques may be necessary to re-
solve situations in which existing information is not
definitive.

e Information extracted from large information net-
works such as the World Wide Web is typically in-
complete. The ability to exploit partial information is
very useful for identifying sources of service or in-
formation. For example, that an online service deals
with greeting cards may be evidence that it also sells
stationery. It is clear that search effectiveness could
be improved by appropriate use of technologies for
handling uncertainty.

These problems all require IF, both low and high
level. They bear an obvious relationship to the kinds of
problems found in the sensor, data, and IF domain.

IlI.  UNCERTAINTY REPRESENTATION AND
REASONING FRAMEWORK

This section describes an evaluation framework to
support assessment of how the choice of uncertainty
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Fig. 2. URREF Boundary. This figure depicts the world being sensed on the left, the role of uncertainty representation and reasoning
within a fusion system in the center, and the world being perceived on the right. The evaluation framework boundary encompasses the fusion
system input, uncertainty representation, uncertainty reasoning and the fusion system output. Everything inside the evaluation framework
boundary is known as the Uncertainty Representation and Reasoning Framework (URREF). The uncertainty representation and uncertainty
reasoning are the primary subjects of evaluation, whereas the input and output are secondary subjects of evaluation.

representation and reasoning impacts the performance
of an IF system. The scope of the framework is the main
focus of the first sub-section, which is followed by an
overview of its main component, the URREF ontology.
Finally, an elementary fusion process is presented, as a
means to identify the primary evaluation subjects of the
evaluation methodology envisioned for the framework.

A. The URREF Scope

The basic idea behind the framework is to analyze an
abstract fusion system and define its input data and out-
put products. In a hypothetical IF system of the future,
the uncertainty representation approach would be “plug-
and-playable.” That is, one might run the system with
a Bayesian approach, then switch to a Dempster-Shafer
approach, and then a Fuzzy Random Set approach. Al-
ternatively, one might use a combination of uncertainty
reasoning methods, as best suited for different aspects
of the problem. The input data are the same in each case,
as are the output products (but not necessarily the spe-
cific contents of the output products). Figure 2 depicts
the uncertainty representation and reasoning evaluation
framework (URREF) and its role in the overall fusion
process.

There are two elements in the picture that are exoge-
nous to the evaluation framework, named in the picture
as “World being sensed” and “World being reported.”
Between these two external elements, the boundary of
the evaluation framework encompasses the way uncer-
tainty is handled when data is input to the system, during
the processes that occur within it, as well as when the
final product is delivered to the IF system’s users. The
uncertainty representation and uncertainty reasoning are
the primary subjects of evaluation, whereas the input
and output are secondary subjects of evaluation.

140

The first external element refers to the events of
interest to the IF system that happen in the world and are
perceived by the system sources. Note that the implicit
definition of sources in this case encompasses anything
that can capture information and send it to the system.
That is, both hard sources (e.g., imaging, radar, video,
etc.) and soft sources (HUMINT reports, software alerts,
etc.) are considered external to the evaluation system
with respect to their associated sensorial capabilities,
while the way they convey their information is within
the scope of the system [24], [26], [27].

This reflects an important distinction between the
evaluation of an IF system and the evaluation of its
handling of uncertainty. To illustrate the distinction,
consider the Input element in Figure 2. This element
addresses the system’s ability to represent uncertainty
as an intrinsic part of the information being captured.
As an example, information regarding trust of the input
from a given sensor is important to evaluating how the
overall system handles uncertainty, although it might not
be as critical for its overall performance. A key question
for evaluating uncertainty representation is what the
uncertainty characteristics of the input data are, and how
they affect the use of different uncertainty schemes.
On the other hand, the format of the input might be
important to evaluation of system interoperability, but
is not included in Figure 2 because it does not relate
to uncertainty handling. In general, the elements inside
the evaluation framework boundary in the figure are
important to evaluation of uncertainty handling, but
not necessarily to evaluation of other aspects of fusion
system performance. Likewise, elements that are critical
to overall evaluation but not important to uncertainty
handling are not included here.

In the ideal system model, having the appropriate
data characteristics is critical. If the characteristics do
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not span the range of uncertainty techniques, then the
model may not give meaningful results about the opera-
tionally significant differences between the techniques.
Correctly identifying the desired input data characteris-
tics will shape the future development of use cases and
modeling data sets for those use case.

Once information is in the IF system, it will be pro-
cessed to generate the system’s deliverable that requires
uncertainty characterization and reporting in the Output
step. This process involves fusion techniques and al-
gorithms that are directly affected by the uncertainty
handling technique being used, as well as its impact on
the system’s inferential process. In this case, the UR-
REF evaluation criteria focus on aspects that are spe-
cific to the way uncertainty is considered and handled
within the fusion process. This is not an evaluation of
the system’s performance as a whole. We want to under-
stand how the uncertainty representation affects system
performance, and whether different uncertainty repre-
sentation schemes are more or less robust to variations
in the remaining parts of the IF system architecture. We
want to focus specifically on the uncertainty representa-
tion aspects, and attempt, as best as possible, to separate
those aspects from the overall system performance and
architecture concerns.

After the information is fused and properly treated,
then it is conveyed to the system’s users. In Figure 2,
these are represented by an image depicting decision-
makers who would likely be supported by the IF system
in their tasks. The URREF output step involves the as-
sessment of how information on uncertainty is presented
to the users and, therefore, how it impacts the quality
of their decision-making process.

B. The URREF Ontology

The word “framework” in URREF’s name reflects
the conclusion we reached during the early ETURWG
meetings, as we discussed how uncertainty in IF systems
should be evaluated. From the very beginning, it became
clear to us that we were not developing a tool to measure
a set of metrics related to uncertainty in a given system.
After all, because uncertainty is embedded in practically
all aspects of the process, each application would have
so many nuances that designing a ‘“one-size-fits-all”
evaluation tool would either be too specific for use
in diverse IF systems, or too generic to be useful. In
other words, we soon realized that what was needed
to move the state-of-the-art in uncertainty evaluation
was not a monolithic evaluation program or tool, but
a set of standards, best practices, guidelines, and other
development tools that provides coherent and consistent
support for those tasked with evaluating uncertainty
in information systems. We call this set an evaluation
framework.

The reasons behind this view of URREF as a frame-
work instead of a system, program, or tool, also implied
that the diversity and complexity of the IF systems to be

evaluated would require this framework to be flexible
and adaptable enough to be used by developers with dis-
tinct backgrounds and requirements. We soon realized
that defining common terminology was an enormous
challenge, as a given term might have different mean-
ings to different people, whereas a common idea might
be given different names by different people. Designing
a “mother of all evaluation taxonomies” was not an op-
tion, as it would be useless to various use cases, such
as existing systems with already established semantics.
Thus, when designing the framework we were naturally
inclined to adopt ontology as a knowledge representa-
tion technique, as an ontology provides embedded sup-
port for reasoning and allows for explicit semantics that
could be aligned, adapted, or reused when developing
evaluation systems.

Designing an ontology for URREF proved to be a
tall order though. Within the ETURWG we have peo-
ple with distinct backgrounds, so it was natural to see
some “semantic misalignment” regarding concepts such
as data quality, accuracy, precision, etc. These differ-
ences in understanding proved to be challenging to deal
with, but an accurate preview of the challenges that arise
when using a framework that invariably includes con-
cept definitions that may not fully match the views of
different users. Not surprisingly, it took a considerable
amount of time to arrive at a stable version of the UR-
REF ontology, and while all in the group would prefer
one or more specific concepts to be defined in a differ-
ent way, the group agreed that the current version of the
ontology is sufficient to support the evaluation of uncer-
tainty in IF systems consistently and coherently. Most
of the concepts used have been drawn from seminal
work in related areas such as uncertainty representation
(e.g., [27]-[35], evidential reasoning (e.g., [36]-[38]),
and performance evaluation (e.g., [9], [39]-[41]). We
now describe the main aspects of the URREF ontology,
including its classes, properties, and key concepts. The
reader would benefit from actually accessing the files,
and even following the work of the ETURWG group.
In addition to the information provided in the group’s
website, as indicated earlier in this paper, the ontology
itself can be downloaded or opened directly from an on-
tology editor (e.g., Protégé [42]) via its official URL.?
Alternatively, cloning the group’s GitHub repository?
would provide access to not only the current version of
the ontology but also previous versions, references, and
other related working documents.

Figure 3 depicts the main classes of the URREF on-
tology, which were identified by the ETURWG group
as pertinent to the evaluation of uncertainty within an
IF system. These classes represent concepts meant to
be sufficient to support the design of evaluation pro-
cesses that follow the same semantic constraints and

2http://eturwg.c4i.gmu.edu/files/ontologies/URREF.owl
3https://github.com/paulocosta-gmu/urref/tree/master
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Fig. 3. Main classes of the URREF ontology

abide by the same principles of mathematical sound-
ness. To emphasize the pragmatic aspect of the work
of the ETURWG, it can be noted that these concepts
capture the main aspects the group agreed upon when
developing the use cases described in Section V. In fact,
a brief comparison between these concepts and those of
the first version of the ontology (cf. [22]) will show
that many classes had to be added as a result of both
the evolving discussions and the requirements elicited
from the use cases.

The eighteen main classes of the URREF criteria
focus on aspects that are specific to the way uncertainty
is considered and handled within the fusion process.
Figure 3 was built using the Protégé OWLviz plugin.*
The classes are depicted as collapsed at the first level.
Classes with a small black arrow head at the right have
subclasses which can be shown in an expanded view.
One example is the class TypeOfScale, which is depicted
in its entirety in Figure 4. Its individuals correspond to

“https://github.com/protegeproject/owlviz
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Fig. 4. URREF TypeOfScale class

specific scales used in quantifying the metrics employed
when evaluating an IF system according to a given cri-
teria, and its subclasses aggregate the types of quan-
tification adopted. For instance, assume the precision
of a given sensor (i.e., using the subclass Precision as
evaluation criterion) would be evaluated using

n
Upre = ZL(rt,at),
=1

where 7 is the number of measurement trials, and L is a
loss function with parameters r for reported value and
a for actual value. In this case, the range of the loss
function will dictate which type of scale should be used
in that evaluation (e.g., a loss function returning a ratio
between the two parameters would be classified under
the associated type of scale). In the URREF framework,
this class provides a way of mapping evaluation subjects
and criteria chosen to the potential metrics and associ-
ated quantification types that can be used in a given
evaluation.

While the type of scale defines how to quantify the
metrics used to assess a given criterion in an evaluation,
the EvaluationMetrics class defines what metric is being
used (i.e., what is) the parameter being assessed. In the
example of Eq. (1), the criterion being assessed is per-
formance and the formula itself can be seen as the met-
ric used to assess that criterion. Currently, the ontology
only includes examples from NATOQO’s Standardization
Agreement 2511 (STANAG 2511) effort, which incor-
porates categories of reliability and credibility. Reliabil-
ity has traditionally been assessed for physical machines
to support failure analysis. Source reliability of a human
can also be assessed. Credibility is associated with a
machine process or human assessment of collected evi-
dence for information content [43]. As the group work
progresses, further standards are likely to be included
as well.

Another example is the EvaluationCriterion class,
depicted in Figure 5 and is at the core of any evaluation
procedure. Not surprisingly, it is the larger class of the
URREF ontology and the one with more levels. When
looking at its main sub-classes, the more detail-oriented
readers would be able to establish a parallel between
these subclasses and the items within the Evaluation
Framework Boundary framework depicted in Figure 2.
More specifically, the Uncertainty Representation and
Uncertainty Reasoning boxes can be mapped directly

(1)
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to the equally named sub-classes, while the classes
InformationHandlingCriterion and InformationCriterion
can be associated with the flow of information between
Input and Output boxes.

The above classes form the structure of the UR-
REF ontology, and were meant to collectively support
the evaluation of uncertainty of an IF system. This is
the third version of the URREF ontology, and at the
time of this writing the group is now focusing on the
case studies, which provide the necessary testbed for its
ideas—and might force changes in the above classes.
This approach privileges the pragmatism of having a
good solution against having an “ideal” but unattainable
solution. For instance, a definitive reference would in-
volve having universally accepted definitions and usage
for terms such as “Precision.” This is unfeasible in any
field of research that is not tightly controlled by a unique
authoritative entity. The ETURWG approach also takes
into consideration that more important than naming a
concept is to ensure that it is represented clearly and
distinctly within the ontology so to ensure the consis-
tency of the latter.

Ontology reasoning requires axioms and properties
to be defined, formally exposing the relationships be-
tween the above concepts that ultimately drive the logi-
cal reasoning that makes ontologies a very flexible and
powerful technique. As an example, the object prop-
erty HasDerivationOfUncertainty is used to map indi-
viduals of class Evidence (i.e., the domain of the prop-
erty hasDerivationOfUncertainty) to individuals of class
UncertaintyDerivation (i.e., the range of the property).
The reasoner would use this relationship between these
classes to support queries, automated classification, and
other features the URREF could provide to its users.

A comprehensive description of the URREF ontol-
ogy, with its classes, properties, and other elements is
not within the scope of this paper. For a comprehen-
sive overview of the URREF ontology, interested read-
ers should refer to the ETURWG Github repository and
the ETURWG website already mentioned in this paper.

C. The URREF Elementary Fusion Process

The elements of the Uncertainty Representation and
Reasoning (URR) techniques to be assessed and com-
pared will be referred within the URREF framework as

URREF: UNCERTAINTY REPRESENTATION AND REASONING EVALUATION FRAMEWORK FOR INFORMATION FUSION 143



| = =T e I

Fusion Algorithm

Fusion Method

Uncertainty Theory (ies)

Uncertainty

. Reasoning
representation

Fig. 6. An approximate hierarchy of fusion system components as
possible evaluation subjects.

evaluation subjects. Owing to the complex and multiple
connections between elements it seems difficult (if at
all possible) to separate the uncertainty representation
(e.g., an instantiated probability distribution) from its
associated reasoning scheme (e.g., Bayes’ rule), from its
underlying uncertainty theory or mathematical frame-
work (e.g., probability theory), from an underlying se-
mantic representation (e.g., possible worlds, Ontology
Web Language (OWL)), from the fusion method, from
the fusion algorithm processing information (e.g., a spe-
cific implementation possibly involving some approxi-
mation), from a higher-level fusion system possibly in-
cluding some human interaction.

Figure 6 illustrates some system components to as-
sess and which interact to build a complete fusion sys-
tem. As far as the URREEF is concerned, the elements of
an Uncertainty Representation and Reasoning scheme
are the main evaluation subjects (thick lines in Figure
6), while the uncertainty theory, fusion method and fu-
sion algorithm are of secondary focus. It is not the main
purpose of the URREF to address the assessment of the
fusion system nor the data model nor the architecture
(dotted lines in the figure). Empirical evaluation tech-
niques often require embedding some uncertainty repre-
sentation and its associated reasoning scheme within the
fusion method, which serves as an enabler and becomes
often the subject of evaluation itself. Inherently, it is not
a trivial problem to isolate the uncertainty representation
from either its reasoning scheme or the fusion algorithm
which may implement other contributing aspects, albeit
minor.

For each evaluation subject, a series of evaluation
criteria of interest is then defined in the URREF on-
tology [22] (see Section IV). It happens that the same
criterion applies to different subjects with thus possible
different associated metrics (or measures). For instance,
Accuracy can be a quality criterion of information and
of a source of information.

The fusion method is further detailed here by defin-
ing a generic procedure that highlights the main elemen-
tary constructs of uncertainty representation and reason-
ing that are the primary URREF evaluation subjects to
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be further defined in Section IV. The fusion method
may be very complex, involving possibly several uncer-
tainty representations, combination or inference rules,
possibly framed in different uncertainty theories. Here,
we abstract away complexities that are inessential to our
purpose to obtain a simple, albeit quite general, fusion
method aimed at clarifying the information flow. The
result can be considered as an “atomic” fusion process.

The elementary constructs of a fusion process are
shown in Figure 7, and illustrated with corresponding
human intelligence fusion and multiple radar fusion
examples in Table I:

@® S is a source of information;

@ ¢ is a piece of information provided by (or extracted
from) S. It can be as simple as a measurement but
could also be a natural language statement, a proba-
bility distribution, or in general a piece of informa-
tion with some uncertainty already represented in a
specific uncertainty theory;

® h is the uncertainty representation process by which
¢ is transformed into a dedicated mathematical func-
tion conveying some notion of uncertainty. The pro-
cess h is typically the choice of the solution de-
signer who selects the way incoming information
may be converted into a mathematical object. It can
be learned from data when available or it can be gen-
eral to all POIs, specified by type of source, by type
of information, etc. Prior information on source’s
quality (e.g., reliability), source’s self-confidence in
statement, contextual information, comparison with
other POlIs, etc, may be captured by #;

@ h(¢) is the instantiated mathematical representation
as built by & and expresses either the self-assessment
of the source, an external assessment by the designer
based on prior source’s quality knowledge or an
aggregation of both;

® p is the inference process which transforms s(¢) into
another h,(¢) within the same uncertainty theory.
At this point, a series of POIs from other sources
{h(¢)};=1. n are combined, where other POIs are
deduced, predicted, revised, etc;

® h,(¢) is the resulting piece of information built from
h(¢) and other related information;

@ [ is the decision process which transforms h_(¢) to
provide the decision, i.e., the output information ¢';

¢' is the information output, to be possibly sent
other systems. It can be a formal representation,
i.e., an uncertainty function (such as a probability
distribution), or a single measurement estimated after
the decision process (soft versus hard decision). It
can thus contain or not contain some uncertainty;

@ the reasoning process is [ o p;
® the Atomic Decision Procedure (ADP) is [opoh.
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TABLE I

Elementary fusion process constructs illustrated at the hand of a) a human intelligence fusion example and b) a multiple radar centralized

fusion example

Element Example
Ds a) Human observer
b) Radar sensor
@ [0} a) Human report,
b) Radar range velocity measurement
®@h a) Convert a natural language statement to a belief function over locations,
b) convert a range and angle measurement and associated Root Mean Square Error (RMSE) error value to a Gaussian
distribution with mean and variance
@ h(¢) a) Belief function
b) Gaussian probability distribution
®p a) Dempster’s combination rule (combine multiple reports)
b) Bayes’ rule (combine multiple measurements form different radars)
®! a) Maximum of plausibility rule
b) Find expected value of posterior distribution
@ ¢ a) Element with maximum plausibility (or complete plausibility distribution over singletons)
b) Expected value of the posterior distribution
bt 1
——=! ADP2 ; —
_____ . Other formal information
{h(a)}
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Fig. 7. Basic information flow and evaluation subjects.

Figure 7 illustrates this process and depicts each
of the above 10 items in its appropriate place in the
process.

As further detailed in [44], the method can distin-
guish between:

a) information processors (providing POIs): Elements
@, 0,6, o, ®;

b) the provided: Elements @, ®, ®, ®;

c) the pairs (process; output information): (®,®);

(©,@); (6,8); (©,8); (9,0); (©,0)=(D,®)

From an algorithmic standpoint, we may want to
assess each of the 10 items above. However, based on
the following observations some simplifications arise:

e Each information processor can be assessed through
the information it provides, so it is natural to consider
the pairs (processor; output information);

e The pair (®,®), (source; input information), is de-
fined as a secondary evaluation subject and its previ-
ous characterization should be considered in the as-
sessment of the primary subjects (see Section IV);

e In some cases, the reasoning process (/o p) may be
considered as a whole, without separating the combi-
nation from the decision.

Thus the most important pairs (i.e., primary subjects)
are:

e (®,@)—the uncertainty representation process h to-
gether with its output;

e (®,8)—the reasoning process together with its out-
put;

e (©,®)—the pair (representation, reasoning) together
with its output.

IV.  URREF EVALUATION SUBJECTS

Following the previous detailed description of an el-
ementary fusion process, this section defines the differ-
ent evaluation subjects and identifies the corresponding
criteria of the URREF ontology.

DEFINITION 1 (Evaluation subject) An Evaluation
Subject is an item which can be assessed through the
Uncertainty Representation and Reasoning Evaluation
Framework according to the criteria defined in the UR-
REF ontology.
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Evaluation subjects correspond to design choices to
assess for an enlightened solution design. The identifi-
cation of the evaluation subjects helps to better specify
and communicate the goal of the URREF ontology but
also better focus the effort on the primary subjects that
are uncertainty representations and reasoning schemes
embedded in fusion algorithms. In the following we thus
specify what is understood by “uncertainty representa-
tion” and by ‘“reasoning.”

The Joint Directors of the Laboratory (JDL) or up-
dated version of the Data Fusion Information Group
(DFIG) model fusion model (e.g., [45]) is a functional
description of a series of fusion problems organized
along levels. In order to solve these problems, a mod-
eling step is required which isolates the real world en-
tities and processes (RWEPs [46]) of interest, identi-
fies the corresponding (uncertain) variables, possible
sources of information, makes some assumption of the
world’s dynamics and states, represents the underlying
uncertainty and finally designs the reasoning scheme
by either merging, updating, revising information for
an estimation (or prediction) of the variables states.

DEFINITION 2 (Fusion problem) A fusion problem cor-
responds to some unknown states or dynamics of the
real world and for which several sources of information
are available. Fusion problems typically correspond to
the different levels of the JDL/DFIG model and encom-
pass as subclasses for instance tracking, target classi-
fication, anomaly detection, threat assessment and re-
source management.

Note that the notion of source depends on the mod-
eling and does not necessarily mean several sensors.
Features in a classification problem could be considered
as “sources.” A fusion problem is solved by a fusion
method.

DEFINITION 3 (Fusion method) A fusion method is a
set of rules encoding a solution to the fusion problem at
hand, involving several sources of information. It imple-
ments some uncertainty representations and reasoning
schemes.

For instance, a Kalman filter is a fusion solution to a
multi-sensor filtering problem in tracking applications.
It implements an updating scheme involving a predic-
tion step followed by a revision step within a proba-
bilistic framework [47]. A naive Bayes classifier is a
fusion solution to a classification problem, which is im-
plemented as a naive Bayes (i.e. probabilistic) model
where features (possibly provided by different sources)
are assumed to be independent, followed by a maximum
a posteriori (MAP) decision rule.

DEFINITION 4 (Uncertain variable) An uncertain vari-
able represents a feature of the real world for which
the state is unknown, partially known or uncertain. It
describes the fusion problem and its state has to be es-
timated by the fusion method.
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The concept of uncertain variable generalizes the
one of random variable itself representing a random
phenomenon (and generally expressed by a probability
distribution), to encompass the cases of epistemic un-
certainty where uncertainty is not due to the variability
of the phenomenon, but to a lack of knowledge. We
can define thus two types of variables relative to the na-
ture of uncertainty (see class UncertaintyNature of the
URREF ontology [22]): Random variable and epistemic
variable.

For instance, in a Kalman filter the uncertain (ran-
dom) variables correspond to the position and the speed
of the target at time ¢ and ¢ + 1, usually gathered into
(random) state vectors X, and X, , but also to the mea-
surements received by the sensors represented by a state
vector y,. In a vessel classification problem, the uncer-
tain (epistemic) variable would be the class of the spe-
cific vessel observed.

The primary purpose of the URREF is to assess how
uncertainty is handled in a given fusion method, with
a specific focus on the uncertainty representation and
the reasoning components. In a formal uncertainty han-
dling, both components abide to rules and constraints
defined by the uncertainty theory considered.

DEFINITION 5 (Uncertainty theory) An uncertainty
theory is a set of axioms and rules describing uncertainty
representation and reasoning. Two components can be
distinguished, although possibly strongly connected:

1) The representation which defines uncertainty rela-
tions (or functions) through established sets of ax-
ioms;

2) The reasoning which defines inference (or belief
change) rules to manipulate uncertainty functions
and create new ones.

Uncertainty functions and inference rules can be
assigned different semantics.

Examples of quantitative uncertainty theories are
probability theory, evidence theory, fuzzy sets theory,
random sets theory, possibility theory, and imprecise
probability theory. Some qualitative theories are pos-
sibilistic logic, fuzzy logic or probabilistic logic.

A Kalman filter is framed into probability theory
which itself defines probability functions to convey
uncertainty notions. Probability functions must satisfy
the three axioms of P(@) = 0 for the impossible event,
P(Q) =1 for the certain event and P(A) + P(A) = 1 for
any event (where @ denotes the empty set, 2 denotes
the universe and A denotes the complement event of
A). The most classical inference rule is Bayes’ rule
which defines the posterior probability of an event based
on the occurrence of another one as P(A|B) = P(B |
A)P(A)/P(B). Several interpretations (or Uncertainty-
Derivations [22]) can still be assigned to probability val-
ues, roughly either objective (e.g., frequentist) or sub-
jective (e.g., degree of belief).
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DEFINITION 6 (Uncertainty relation) An uncertainty
relation is a mathematical or logical object conveying
some notion of uncertainty. It can be an uncertainty
function if each subset of the frame is related to a
value between O and 1 or a binary relation such as an
accessibility relation in modal logic.

The uncertainty relation covers uncertainty functions
such as probability functions but also equivalence rela-
tions between states defining for instance rough sets.
Uncertainty relations are the core representation of un-
certainty, and express how much or how we or/and the
sources are uncertain. They are defined over sets of vari-
ables, which themselves represent what we are uncertain
about.

DEFINITION 7 (Uncertainty Modeling Scheme) An
Uncertainty Modeling Scheme (UMS) is a theoretical
concept that provides a mapping between (i) domain
independent mathematical concepts and (ii) classes of
fusion problems. A UMS

(1) introduces types of uncertain variables and the types
of relations between these variables that are relevant
for the modeling of a specific type of problem;

(2) provides semantics for a selection of uncertain rela-
tion types;

(3) formulates assumptions about the represented prob-
lem type;

(4) defines uncertainty functions over these variables.

For example, the UMS defining representations used
by Kalman Filters introduce random variables repre-
senting the states of a dynamic process and observa-
tions. Moreover, it relates covariance matrices to the
normally distributed process dynamics and observa-
tions, respectively. This model is based on the assump-
tions that the represented dynamic processes are linear
and normally distributed. The UMS for causal Bayesian
Networks associates basic conditional probabilities with
uncertain causality. This model assumes Markov prop-
erty, conditional independence theoretically captured by
d-separation concepts and Markov Blankets. A UMS
typically corresponds to a specific type of reasoning
scheme. A UMS represents a theoretical basis for the
solution of a specific use case (see Def. 8).

DEFINITION 8 (Uncertain Domain Model) An Uncer-
tain Domain Model (UDM) is an artifact defined through
(i) a set of uncertain variables and (ii) uncertainty re-
lations which encode some assumptions about the real-
world dynamics and states in a specific application. An
UDM is a specific instantiation of a representation of the
uncertainty associated with a specific real-world prob-
lem itself framed into an uncertainty theory and thus
constrained by the rules and axioms. Such framing is
provided by a suitable UMS (see Def. 7).

UMS defines the form of & and p, i.e. types of vari-
ables and functions in combination with a suitable un-
certainty theory. The UDM defines the specific constel-
lations of the variables and specific parameters used in &
and p. The UMS supports theoretical analysis that facil-
itates (i) comparison of uncertainty representations and
reasoning in a class of applications and (ii) an evaluation
of the adequacy of a specific technique in a specific ap-
plication (use case). The evaluation of a UDM supports
the engineering process in the development of a spe-
cific fusion solution. An uncertain domain model could
be the graphical part of a Bayesian network together
with the instantiated joint probability distribution defin-
ing uncertainty over the set of variables. An uncertain
domain model describes uncertainty about states of the
variables and relations between variables and expresses
thus some assumptions about either

(1) uncertain knowledge of possible states and dynam-
ics of the world (generic knowledge/information/
uncertainty);

(2) uncertain evidence about the current state of the
world (singular information/uncertainty).

Although it is more common to associate singular
evidence to a source of information, generic knowledge
can also itself be derived from some source. For in-
stance, a statistical model representing the maritime traf-
fic and linking kinematic variables through some (possi-
bly conditional) probability distributions (e.g. see [48])
can be interpreted as an uncertainty function derived
from a specific AIS dataset covering a particular area
during a given period of time, the source of this model.

DEFINITION 9  (Uncertainty reasoning scheme) An un-
certainty reasoning scheme encodes some inference un-
der uncertainty aiming at solving the fusion problem, by
means of rules defined for several uncertainty functions.

For instance, Bayes’ rule can be used “both for pre-
diction from observations and revision of uncertain in-
formation” [49]. It can be used as a merging (fusion)
rule performing a conjunction (product) of likelihoods
provided by different sources. Dempster’s rule itself en-
codes merging of (singular) testimonies for independent
sources [50]. The combination rules have also different
semantics and maybe thus dedicated to solve different
types of problems (e.g., [49]).

DEFINITION 10 (Source (of information)) A source
of information is any entity providing some piece of
information.

A source of information is a relative notion and cov-
ers anything from where information can be extracted,
i.e. a dataset, a database, an image, a video, a witness,
etc, or the device providing it, i.e. a radar, a camera,
an expert, etc. It can provide either generic or singular
information.
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DEFINITION 11  (Piece of information) A piece of infor-
mation is an item possibly conveying some information,
and provided by a source.

The term “piece of information” is used in this paper
in its most general meaning covering other notions such
as evidence, knowledge and/or data. A piece of infor-
mation can be as simple as a measurement (on the scale
of real numbers) but could be a fact (i.e., an observa-
tion, known to be true), an uncertain statement already
modeled into a given mathematical formalism (i.e., a
probability distribution), an unstructured statement in
natural language, etc.

Figure 8 lists the URREF evaluation subjects. Ele-
ments within rectangles with yellow circle bullets are
classes. Examples of instance for each class are pro-
vided in rectangles with purple diamond bullets. The
meaning of the relationship is displayed on arrows. N-
ary relationships are displayed with blue arrows con-
taining a triangle.

We identify the primary evaluation subjects of the
URREF as:

e the uncertainty representation, which is either in-
stantiated or theoretical: a particular probability dis-
tribution or probabilities in general; it may include in-
stantiated uncertainty representations of processes in
the real-world and how those processes are observed;

e the associated reasoning (or calculus) that comprises
the combination, conditioning, updating, inference,
decision, transformation rules. The calculus may be
assessed while instantiated within a fusion method or
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theoretically, regardless any application or algorithm,
focusing on the semantics for instance (e.g., Bayes’
rule in general).

In URREEF, the first is represented by the classes
UncertaintyTheory and UncertaintyModel, while class
UncertaintyReasoning represents the latter.

It is expected that a preliminary assessment of theo-
retical objects, either uncertainty representations or rea-
soning rules, is performed in the initial design phase
(inception phase [51]), relying mainly on the literature
and on the expertise of the fusion method designer. This
pre-screening should provide guidance on the selection
of appropriate models or reasoning schemes to be im-
plemented which best suit the fusion problem at hand
as far as uncertainty handling is concerned. In a second
step, the assessment of instantiated representations and
reasoning schemes should be assessed through a spe-
cific implementation of the fusion solution in a fusion
algorithm, processing data. Then, output data analysis
should provide some assessment on the implemented
uncertainty handling method.

Secondary evaluation subjects of the URREF encom-
pass other elements which either support or can be de-
rived from the assessment of the primary subjects, but
which are not the main concern of the URREF ontology:

¢ the fusion method, making use of instantiated uncer-
tainty representations embedding pieces of informa-
tion ¢ built according to a specific uncertainty repre-
sentation process i and associated calculus /o p, and
implemented by the fusion algorithm;
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e the source of information which provides the differ-
ent and which quality may impact the whole fusion
process. It can be expected that an uncertainty repre-
sentation is able to properly capture and handle the
meta-information about the source quality;

e the pieces of information input, processed and out-
put throughout the process. Input and output infor-
mation are only two special cases but others can be
considered provided by internal steps such as for in-
stance the aggregated information. The information
assessment is at the core of the assessment of the un-
certainty representation and reasoning. However, the
development of such information quality criteria is
not currently the main purpose of the ETURWG;

e the uncertainty theory (or framework) for uncer-
tainty representation and reasoning (e.g., probabil-
ity, fuzzy set, belief function theories). It can be as-
sessed either theoretically, based on axioms, proper-
ties and original semantics as reported in the literature
or through the assessment of the output provided by
a specific fusion algorithm implementing the fusion
method and specific instantiated uncertainty repre-
sentations.

The fusion algorithm may be assessed either as a
whole (assessing only the output) or through its dif-
ferent components that are the instantiated uncertainty
representation (process and output information), and
instantiated calculus (process and output information).
Equivalently, the uncertainty theory can be assessed
considering the theoretical uncertainty representation
(i.e., general uncertainty function such as a probability
or a belief function) on the one hand or/and the theoret-
ical calculus apparatus (i.e., the set of reasoning tools
available to this framework) on the other hand.

For each evaluation subject, there exists a corre-
sponding set of evaluation criteria within the ontology,
as illustrated in Figure 9. The quality of the source is as-
sessed by QualityCriterion, the provided are assessed by
InformationCriterion, the uncertainty representation part

of the fusion method is assessed through Representa-
tionCriterion and the reasoning part is assessed through
ReasoningCriterion.

A. Source criteria

Criteria about the source of information are neces-
sary to characterize information input to the fusion pro-
cess (other said, output by the source). The use of these
criteria is rather informative than “judgmental.” We as-
sume that these initial assessments are known prior to
processing the information and the question is if and
how the fusion method, and especially the uncertainty
representation and reasoning scheme are able to han-
dle the different source quality dimensions. They are
directly linked to the criteria on expressiveness (i.e.,
class ExpressivenessCriterion). As such, the source is
a secondary evaluation subject and impacts the other
subjects.

B. Information Criteria

Pieces of information (POIs) appear at different
steps of the fusion process and include in particular,
input data, measurement or declaration before any mod-
eling of uncertainty (i.e., input information or dataset),
the instantiated uncertainty representation (after uncer-
tainty has been modeled), aggregated information (after
the combination or inference process) and output infor-
mation to be consumed by the user. Each of these POIs
should be characterized according to the same subset of
criteria although the expectations in their respect may
differ. For instance, it is not expected that the input in-
formation be precise, nor true. Yet, it would be expected
at the output. Also, comparing pieces of information at
several steps of the process provides assessment of rel-
evance (if one has an impact on the other one). There-
fore, the same set of evaluation criteria should be used
to assess input information, uncertain information (af-
ter ), combined information, and output information. If
the same measure is used to capture this criterion, only
the values (and the user’s expectations) may change,
not the criteria themselves. For input information, the
assessment is rather a characterization, while for the
other POIs during the process, the assessment criteria
can be turned to optimization criteria to further tune the
algorithm (e.g., maximize the Accuracy).

C. Representation Criteria

The Representation criteria (class RepresentationCri-
terion) are aimed at assessing the primary subject of
evaluation within the URREF. Unsurprisingly, expres-
siveness is the main one. Indeed, at the inception phase
[51], i.e. before any instantiation of an uncertainty rep-
resentation, we are interested in the expressive power
provided by its underlying uncertainty theory. This is
a prior (theoretical) assessment driven by the problem
at hand which mainly relies on analyzes of (1) the ax-
iomatic constraints of the framework and (2) the current
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literature about the development of the approaches and
tools to support the representation of concepts of inter-
est as identified within the expressiveness list of criteria.
The instantiated uncertainty representation should also
be assessed along with the subset of criteria. An instan-
tiated uncertainty representation is a piece of informa-
tion and as such, will be assessed using the information
criteria described above.

D. Reasoning criteria

This subset of criteria is so far not very detailed
within the URREF ontology of criteria. Several inter-
related elements must be considered:

a) the calculus and mathematical apparatus of the un-
certainty theory, i.e., the set of reasoning tools avail-
able within this mathematical framework,

b) a particular instantiation of use of one of these rules,
and

c) the fusion method making use of this apparatus.

For a more detailed analysis, these three subjects
should be clearly distinguished, although the same cri-
teria may be applicable and relevant to all of them. For
instance, if we consider the Consistency criterion:

a) a particular rule of combination could be assessed
according to its theoretical ability to provide consis-
tent results,

b) a specific use of the rule which relies on other ele-
ments such as the universe of discourse selected or
the type of uncertainty function to be combine, could
be assessed according to the consistency criterion,
and

¢) a method embedding the rule with the uncertainty
function and associated universe of discourse within
a higher-level reasoning scheme (e.g., nearest neigh-
bors approach, back-propagation) may also be as-
sessed according to the same criterion of consistency.

V. CASE STUDIES

The URREF framework and its ontology component
were developed through an iterative process, an essen-
tial part of which was to apply the framework to of
a set of use cases. The use cases were selected to re-
flect a range of considerations relevant to evaluation of
uncertainty representation within the context of an over-
all fusion application. Applying the framework to use
cases grounds the ideas in concrete application areas,
and helps to uncover requirements that emerge as the
framework is applied to a concrete problem.

The requirements of the use cases in development
are the main driver dictating what properties are needed
within the URREF ontology. As such, the work on
developing these use cases has been generating new
insights and requirements for the URREF (e.g., [51]—
[55]). The three use cases are described briefly below,
with emphasis on how URREF was applied to the use
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case, what was learned through this process, and how
the framework evolved in response to applying it to the
use case.

A. Maritime Domain Awareness

We consider a use case of maritime surveillance
where a harbor area is monitored by a set of sources
mixing sensors and humans: After being informed of the
loss of the AIS contact with a particular fishing vessel one
hour ago (at time 0), the Watch Officer (WO) now (at time
t) needs to recover the track and locate the vessel. The
locations of two unidentified tracks, called Vessel A and
Vessel B, are provided as the only two possible locations
for the missing vessel. The Watch Officer has to match
the known features of the missing vessel, as reported by
its last AIS contact, with the ones of the two unidentified
tracks, as reported by the on-site sources. Hence, its name,
MMSI, IMO, type, length, width, etc., must be known with
a very high confidence to the Watch Officer.

The sources of information available to the Watch
Officer combine a variety of sensors both cooperative
(e.g., Automatic Identification System (AIS)) and non-
cooperative (e.g., radar, camera), whose measurement is
processed either by automatic algorithms (e.g., tracker,
Automatic Target Recognition (ATR) algorithm) or hu-
man analysts (e.g., camera analyst, cargo vessel’s cap-
tain). The radar covers the whole area, the Infra-Red
(IR) camera covers only the area around Track A, a
cargo vessel is in the vicinity of Track B but too far
from Track A for visual identification, and Synthetic
Aperture Radar (SAR) imagery covering the whole area
has been taken 30 minutes ago. Sources are imper-
fect and provide information which can be uncertain
(the source itself is uncertain about its estimation or
statement), imprecise (the source provides several pos-
sible values for the attribute estimated) and/or false (the
value provided by the source does not correspond to the
true value). Consequently, when combining the different
POIs, the Watch Officer may face conflicting informa-
tion.

In order to solve that fusion problem, several so-
lutions can be designed. In [56], we illustrated how
the URREEF can support the designer in the decision of
which uncertainty representation and reasoning method
for fusion should be used. Two different fusion methods
are compared: One framed into probability theory using
Bayes’ rule, and another one framed into evidence theory
using Dempster’s rule. The URREF criteria defined in
classes UncertaintyType, UncertaintyDerivation and Un-
certaintyNature are used to categorize the input infor-
mation highlighting the importance of the derivation of
uncertainty values, as it has a direct impact on the inter-
pretation of the output uncertainty. We stressed how the
elements supporting uncertainty (e.g., variables, links
between variables, uncertainty expression) crossed with
the type of information (generic knowledge versus sin-
gular evidence) help in clarifying that Dempster’s rule
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does not use generic knowledge but uncertain singu-
lar information (evidence), while Bayes’ rule relies on
generic information (knowledge).

B. Counter Rhinoceros Poaching Decision Support

The rhino poaching use case involves a decision sup-
port system that directs the patrol effort of the rangers to
the areas with elevated risk of poaching [57], [58]. The
central part of such a system is a set of Bayesian threat
models, each with context evidence instantiated to cor-
respond to a specific area or cell. A threat model is im-
plemented as a Bayesian Network (BN) that captures the
correlations between various context factors influencing
the poaching (facilitators/inhibitors) as well as observ-
able phenomena that might indicate an imminent threat.
The system outputs a probability heat map that indicates
the suitability for poaching at a specific point in space
and time. The first attempt at applying the URREF on-
tology to the counter rhino poaching decision support
system is presented in [59]. Given information in such
a probability heat map, the rangers can position scarce
resources distributed over large surface areas, such that
the chance of preventing poaching is improved. Thus,
the decision support system for counter rhino poaching
operations covers all of the components of the OODA
loop. The use of URREF concepts is demonstrated in
[60] with reference to the OODA loop applied to the
rhino decision support use case. Additional sources of
information include human intelligence (HUMINT) re-
ports of the field operations as well as the current status
of the international rhino trafficking agencies.

Uncertainty may enter into a fusion system dur-
ing both the design/modeling and routine operational
phases. Selective application of the URREEF to the anti-
rhino poaching use case is demonstrated to characterize
uncertainty during the design/modeling phase in [46]
and during routine fusion system operation in [51], [60].
In particular, the URREEF criteria are applied within the
context of a fusion system development and deployment
life cycle, as demonstrated on a high level context driven
fusion approach to tracking poachers [51].

C. Cyber Threat Models

Systems for threat analysis enable users to under-
stand the nature and behavior of threats and to under-
take a deeper analysis for detailed exploration of threat
profile and risk estimation. Models for threat analysis
require significant resources to be developed and are
often relevant to limited application tasks. In the Cyber
Threat Use Case we presented and discussed a model
for cyber threats which comprises an expert model and
its translation into a Bayesian network (BN) as a tool for
the development of practical scenarios for cyber threats
analysis [61]. The BN for cyber threats is automatically
generated from the expert model, highlighting vulner-
abilities of systems along with threat-specific patterns,
actors, actions and indicators [62]. For this use case,

the goal of using the URREF ontology was to capture
the quality of the knowledge. While the expert model
was created manually by domain experts, by following
a time consuming and expensive process, the BN was
created thanks to an automatic procedure. Thus, the re-
sulting models have different characteristics and gran-
ularity levels, and the question of their accuracy has to
be addressed. For this purpose, the main URREF class
considered for analysis was RepresentationCriterion, a
general class regrouping several criteria explaining how
uncertainty is characterized, captured and stored during
modeling and representation stages, and introducing the
most specific concepts of Simplicity, Adaptability and
Expressiveness [52]. To analyze the model underlying
the cyber threat application, Simplicity and Expressive-
ness criteria were considered. Simplicity is important
since the expert model has to be created manually; Ex-
pressiveness is regarded to assess whether the knowl-
edge encoded in the models is sufficient. Moreover,
metrics were defined for those criteria, based on the
characteristics of the models created (number of nodes
in the model, density of connections). Several experi-
ments carried out with different configurations of the
model showed how the quality level of the knowledge
representation, as captured by means of Simplicity and
Expressiveness, is impacted by parameters of the model
but also a complementary evolution of those criteria, as
increasing the Simplicity goes hand in hand with de-
creases in Expressiveness. Future work is planned to
carry out a complete assessment of knowledge repre-
sentation using URREF criteria, to apply them to dif-
ferent BNs of different sizes and granularities, and to
correlate the criteria for knowledge representation with
other criteria of the URREF ontology.

V1. DISCUSSION AND CONCLUSION

Evaluation of IF systems presents intrinsic chal-
lenges due to the complexity of fusion systems and
the sheer number of variables influencing their perfor-
mance. In LLIF systems, the impact of uncertainty rep-
resentation is well understood, and generally quantifi-
able. However, at higher levels of IF the approach cho-
sen for representing uncertainty has an overall impact
on system performance that is hard to quantify or even
to assess from a qualitative viewpoint. This issue was
recognized by the Fusion community when creating the
ETURWG, with the main goal of providing an unbiased
framework for evaluating the impact of uncertainty in
IF systems. From the beginning, it became clear that
the various approaches and technical considerations de-
mand a common understanding that is only achievable
by a formal specification of the contrasting semantics
and pragmatics involved. As a result, the group devel-
oped the methodology for evaluation, the elements of
the framework supporting it, a set of formal definitions
of the distinct subjects under evaluation, as well as the
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linkage between these and the key aspects of the frame-
work. As explained in this work, URREF is not a system
or software application that can be “directly applied” to
a use case. Yet, the use cases described here were es-
sential for the group to achieve an understanding of all
the nuances and idiosyncratic aspects of the process of
evaluating techniques that are fundamentally different
in their assumptions and views of the world. They pro-
vided the grounding for establishing the URREF con-
cepts and mechanisms needed to mitigate the effects the
underlying assumptions of each theory have in biasing
the design of evaluations—each usually geared towards
the strengths of one technique at the expense of the
others. URREF does not completely remove the sub-
jectivity and biases involved in evaluating uncertainty
representation techniques, but is a strong step towards
that direction.
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